20 research outputs found

    VLSI Implementation of a Spiking Neural Network

    Get PDF
    Im Rahmen der vorliegenden Arbeit wurden Konzepte und dedizierte Hardware entwickelt, die es erlauben, großskalige pulsgekoppelte neuronale Netze in Hardware zu realisieren. Die Arbeit basiert auf dem analogen VLSI-Modell eines pulsgekoppelten neuronalen Netzes, welches synaptische Plastizität (STPD) in jeder einzelnen Synapse beinhaltet. Das Modell arbeitet analog mit einem Geschwindigkeitszuwachs von bis zu 10^5 im Vergleich zur biologischen Echtzeit. Aktionspotentiale werden als digitale Ereignisse übertragen. Inhalt dieser Arbeit sind vornehmlich die digitale Hardware und die Übertragung dieser Ereignisse. Das analoge VLSI-Modell wurde in Verbindung mit Digitallogik, welche zur Verarbeitung neuronaler Ereignisse und zu Konfigurationszwecken dient, in einen gemischt analog-digitalen ASIC integriert, wobei zu diesem Zweck ein automatisierter Arbeitsablauf entwickelt wurde. Außerdem wurde eine entsprechende Kontrolleinheit in programmierbarer Logik implementiert und eine Hardware-Plattform zum parallelen Betrieb mehrerer neuronaler Netzwerkchips vorgestellt. Um das VLSI-Modell auf mehrere neuronale Netzwerkchips ausdehnen zu können, wurde ein Routing-Algorithmus entwickelt, welcher die Übertragung von Ereignissen zwischen Neuronen und Synapsen auf unterschiedlichen Chips ermöglicht. Die zeitlich korrekte Übertragung der Ereignisse, welche eine zwingende Bedingung für das Funktionieren von Plastizitätsmechanismen ist, wird durch diesen Algorithmus sichergestellt. Die Funktionalität des Algorithmus wird mittels Simulationen verifiziert. Weiterhin wird die korrekte Realisierung des gemischt analog-digitalen ASIC in Verbindung mit dem zugehörigen Hardware-System demonstriert und die Durchführbarkeit biologisch realistischer Experimente gezeigt. Das vorgestellte großskalige physikalische Modell eines neuronalen Netzwerks wird aufgrund seiner schnellen und parallelen Arbeitsweise für Experimentierzwecke in den Neurowissenschaften einsetzbar sein. Als Ergänzung zu numerischen Simulationen bietet es vor allem die Möglichkeit der intuitiven und umfangreichen Suche nach geeigneten Modellparametern

    The effect of heterogeneity on decorrelation mechanisms in spiking neural networks: a neuromorphic-hardware study

    Get PDF
    High-level brain function such as memory, classification or reasoning can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear sub-threshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with non-linear, conductance-based synapses. Emulations of these networks on the analog neuromorphic hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm ...Comment: 20 pages, 10 figures, supplement

    Full Wafer Redistribution and Wafer Embedding as Key Technologies for a Multi-Scale Neuromorphic Hardware Cluster

    Full text link
    Together with the Kirchhoff-Institute for Physics(KIP) the Fraunhofer IZM has developed a full wafer redistribution and embedding technology as base for a large-scale neuromorphic hardware system. The paper will give an overview of the neuromorphic computing platform at the KIP and the associated hardware requirements which drove the described technological developments. In the first phase of the project standard redistribution technologies from wafer level packaging were adapted to enable a high density reticle-to-reticle routing on 200mm CMOS wafers. Neighboring reticles were interconnected across the scribe lines with an 8{\mu}m pitch routing based on semi-additive copper metallization. Passivation by photo sensitive benzocyclobutene was used to enable a second intra-reticle routing layer. Final IO pads with flash gold were generated on top of each reticle. With that concept neuromorphic systems based on full wafers could be assembled and tested. The fabricated high density inter-reticle routing revealed a very high yield of larger than 99.9%. In order to allow an upscaling of the system size to a large number of wafers with feasible effort a full wafer embedding concept for printed circuit boards was developed and proven in the second phase of the project. The wafers were thinned to 250{\mu}m and laminated with additional prepreg layers and copper foils into a core material. After lamination of the PCB panel the reticle IOs of the embedded wafer were accessed by micro via drilling, copper electroplating, lithography and subtractive etching of the PCB wiring structure. The created wiring with 50um line width enabled an access of the reticle IOs on the embedded wafer as well as a board level routing. The panels with the embedded wafers were subsequently stressed with up to 1000 thermal cycles between 0C and 100C and have shown no severe failure formation over the cycle time.Comment: Accepted at EPTC 201

    Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

    Get PDF
    Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.Comment: Added measurements with noise in NEST simulation, add notice about journal publication. Frontiers in Neuromorphic Engineering (2019

    Accelerated physical emulation of Bayesian inference in spiking neural networks

    Get PDF
    The massively parallel nature of biological information processing plays an important role for its superiority to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.Comment: This preprint has been published 2019 November 14. Please cite as: Kungl A. F. et al. (2019) Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks. Front. Neurosci. 13:1201. doi: 10.3389/fnins.2019.0120

    Inference with Artificial Neural Networks on Analog Neuromorphic Hardware

    Full text link
    The neuromorphic BrainScaleS-2 ASIC comprises mixed-signal neurons and synapse circuits as well as two versatile digital microprocessors. Primarily designed to emulate spiking neural networks, the system can also operate in a vector-matrix multiplication and accumulation mode for artificial neural networks. Analog multiplication is carried out in the synapse circuits, while the results are accumulated on the neurons' membrane capacitors. Designed as an analog, in-memory computing device, it promises high energy efficiency. Fixed-pattern noise and trial-to-trial variations, however, require the implemented networks to cope with a certain level of perturbations. Further limitations are imposed by the digital resolution of the input values (5 bit), matrix weights (6 bit) and resulting neuron activations (8 bit). In this paper, we discuss BrainScaleS-2 as an analog inference accelerator and present calibration as well as optimization strategies, highlighting the advantages of training with hardware in the loop. Among other benchmarks, we classify the MNIST handwritten digits dataset using a two-dimensional convolution and two dense layers. We reach 98.0% test accuracy, closely matching the performance of the same network evaluated in software
    corecore